
pystorm Documentation
Release 3.1.4

Parsely

Oct 01, 2018

Contents

1 Quickstart 3

2 API 7

3 Indices and tables 25

i

ii

pystorm Documentation, Release 3.1.4

pystorm lets you run Python code against real-time streams of data. Integrates with Apache Storm.

Contents 1

https://travis-ci.org/pystorm/pystorm

pystorm Documentation, Release 3.1.4

2 Contents

CHAPTER 1

Quickstart

1.1 Dependencies

1.2 Spouts and Bolts

The general flow for creating new spouts and bolts using pystorm is to add them to your src folder and update the
corresponding topology definition.

Let’s create a spout that emits sentences until the end of time:

import itertools

from pystorm.spout import Spout

class SentenceSpout(Spout):

def initialize(self, stormconf, context):
self.sentences = [

"She advised him to take a long holiday, so he immediately quit work and
→˓took a trip around the world",

"I was very glad to get a present from her",
"He will be here in half an hour",
"She saw him eating a sandwich",

]
self.sentences = itertools.cycle(self.sentences)

def next_tuple(self):
sentence = next(self.sentences)
self.emit([sentence])

def ack(self, tup_id):
pass # if a tuple is processed properly, do nothing

(continues on next page)

3

pystorm Documentation, Release 3.1.4

(continued from previous page)

def fail(self, tup_id):
pass # if a tuple fails to process, do nothing

The magic in the code above happens in the initialize() and next_tuple() functions. Once the spout enters
the main run loop, pystorm will call your spout’s initialize() method. After initialization is complete, pystorm
will continually call the spout’s next_tuple() method where you’re expected to emit tuples that match whatever
you’ve defined in your topology definition.

Now let’s create a bolt that takes in sentences, and spits out words:

import re

from pystorm.bolt import Bolt

class SentenceSplitterBolt(Bolt):

def process(self, tup):
sentence = tup.values[0] # extract the sentence
sentence = re.sub(r"[,.;!\?]", "", sentence) # get rid of punctuation
words = [[word.strip()] for word in sentence.split(" ") if word.strip()]
if not words:

no words to process in the sentence, fail the tuple
self.fail(tup)
return

for word in words:
self.emit([word])

tuple acknowledgement is handled automatically

The bolt implementation is even simpler. We simply override the default process() method which pystorm calls
when a tuple has been emitted by an incoming spout or bolt. You are welcome to do whatever processing you would
like in this method and can further emit tuples or not depending on the purpose of your bolt.

If your process() method completes without raising an Exception, pystorm will automatically ensure any emits
you have are anchored to the current tuple being processed and acknowledged after process() completes.

If an Exception is raised while process() is called, pystorm automatically fails the current tuple prior to killing the
Python process.

1.2.1 Failed Tuples

In the example above, we added the ability to fail a sentence tuple if it did not provide any words. What happens
when we fail a tuple? Storm will send a “fail” message back to the spout where the tuple originated from (in this
case SentenceSpout) and pystorm calls the spout’s fail() method. It’s then up to your spout implementation to
decide what to do. A spout could retry a failed tuple, send an error message, or kill the topology.

1.2.2 Bolt Configuration Options

You can disable the automatic acknowleding, anchoring or failing of tuples by adding class variables set to false for:
auto_ack, auto_anchor or auto_fail. All three options are documented in pystorm.bolt.Bolt.

Example:

4 Chapter 1. Quickstart

pystorm Documentation, Release 3.1.4

from pystorm.bolt import Bolt

class MyBolt(Bolt):

auto_ack = False
auto_fail = False

def process(self, tup):
do stuff...
if error:
self.fail(tup) # perform failure manually

self.ack(tup) # perform acknowledgement manually

1.2.3 Handling Tick Tuples

Ticks tuples are built into Storm to provide some simple forms of cron-like behaviour without actually having to use
cron. You can receive and react to tick tuples as timer events with your python bolts using pystorm too.

The first step is to override process_tick() in your custom Bolt class. Once this is overridden, you can set the
storm option topology.tick.tuple.freq.secs=<frequency> to cause a tick tuple to be emitted every
<frequency> seconds.

You can see the full docs for process_tick() in pystorm.bolt.Bolt.

Example:

from pystorm.bolt import Bolt

class MyBolt(Bolt):

def process_tick(self, freq):
An action we want to perform at some regular interval...
self.flush_old_state()

Then, for example, to cause process_tick() to be called every 2 seconds on all of your bolts that override it,
you can launch your topology under sparse run by setting the appropriate -o option and value as in the following
example:

$ sparse run -o "topology.tick.tuple.freq.secs=2" ...

1.2. Spouts and Bolts 5

pystorm Documentation, Release 3.1.4

6 Chapter 1. Quickstart

CHAPTER 2

API

2.1 Tuples

class pystorm.component.Tuple(id, component, stream, task, values)
Storm’s primitive data type passed around via streams.

Variables

• id – the ID of the Tuple.

• component – component that the Tuple was generated from.

• stream – the stream that the Tuple was emitted into.

• task – the task the Tuple was generated from.

• values – the payload of the Tuple where data is stored.

You should never have to instantiate an instance of a pystorm.component.Tuple yourself as pystorm handles
this for you prior to, for example, a pystorm.bolt.Bolt’s process() method being called.

None of the emit methods for bolts or spouts require that you pass a pystorm.component.Tuple instance.

2.2 Components

Both pystorm.bolt.Bolt and pystorm.spout.Spout inherit from a common base-class, pystorm.
component.Component. It handles the basic Multi-Lang IPC between Storm and Python.

class pystorm.component.Component(input_stream=<open file ’<stdin>’, mode ’r’>, out-
put_stream=<open file ’<stdout>’, mode ’w’>,
rdb_signal=u’SIGUSR1’, serializer=u’json’)

Base class for spouts and bolts which contains class methods for logging messages back to the Storm worker
process.

Variables

7

https://docs.python.org/3/library/functions.html#id
https://storm.apache.org/documentation/Multilang-protocol.html

pystorm Documentation, Release 3.1.4

• input_stream – The file-like object to use to retrieve commands from Storm. De-
faults to sys.stdin.

• output_stream – The file-like object to send messages to Storm with. Defaults to
sys.stdout.

• topology_name – The name of the topology sent by Storm in the initial handshake.

• task_id – The numerical task ID for this component, as sent by Storm in the initial hand-
shake.

• component_name – The name of this component, as sent by Storm in the initial hand-
shake.

• debug – A bool indicating whether or not Storm is running in debug mode. Specified by
the topology.debug Storm setting.

• storm_conf – A dict containing the configuration values sent by Storm in the initial
handshake with this component.

• context – The context of where this component is in the topology. See the Storm Multi-
Lang protocol documentation for details.

• pid – An int indicating the process ID of this component as retrieved by os.getpid().

• logger – A logger to use with this component.

Note: Using Component.logger combined with the pystorm.component.
StormHandler handler is the recommended way for logging messages from your com-
ponent. If you use Component.log instead, the logging messages will always be sent to
Storm, even if they are debug level messages and you are running in production. Using
pystorm.component.StormHandler ensures that you will instead have your log-
ging messages filtered on the Python side and only have the messages you actually want
logged serialized and sent to Storm.

• serializer – The Serializer that is used to serialize messages between Storm and
Python.

• exit_on_exception – A bool indicating whether or not the process should exit when
an exception other than StormWentAwayError is raised. Defaults to True.

emit(tup, tup_id=None, stream=None, anchors=None, direct_task=None, need_task_ids=False)
Emit a new Tuple to a stream.

Parameters

• tup (list or pystorm.component.Tuple) – the Tuple payload to send to Storm,
should contain only JSON-serializable data.

• tup_id (str) – the ID for the Tuple. If omitted by a pystorm.spout.Spout, this
emit will be unreliable.

• stream (str) – the ID of the stream to emit this Tuple to. Specify None to emit to
default stream.

• anchors (list) – IDs the Tuples (or pystorm.component.Tuple instances)
which the emitted Tuples should be anchored to. This is only passed by pystorm.
bolt.Bolt.

• direct_task (int) – the task to send the Tuple to.

8 Chapter 2. API

https://storm.apache.org/documentation/Multilang-protocol.html
https://storm.apache.org/documentation/Multilang-protocol.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

pystorm Documentation, Release 3.1.4

• need_task_ids (bool) – indicate whether or not you’d like the task IDs the Tuple
was emitted (default: False).

Returns None, unless need_task_ids=True, in which case it will be a list of task IDs
that the Tuple was sent to if. Note that when specifying direct_task, this will be equal to
[direct_task].

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this component. This is the con-
figuration provided to the topology, merged in with cluster configuration on the worker
node.

• context (dict) – information about the component’s place within the topology such
as: task IDs, inputs, outputs etc.

static is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you specify. In almost
all cases, you are better of using Component.logger and not setting pystorm.log.path, be-
cause that will use a pystorm.component.StormHandler to do the filtering on the Python side
(instead of on the Java side after taking the time to serialize your message and send it to Storm).

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm via serializer.

report_metric(name, value)
Report a custom metric back to Storm.

Parameters

• name – Name of the metric. This can be anything.

• value – Value of the metric. This is usually a number.

2.2. Components 9

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pystorm Documentation, Release 3.1.4

Only supported in Storm 0.9.3+.

Note: In order for this to work, the metric must be registered on the Storm side. See example code here.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

2.2.1 Spouts

Spouts are data sources for topologies, they can read from any data source and emit tuples into streams.

class pystorm.spout.Spout(input_stream=<open file ’<stdin>’, mode ’r’>, output_stream=<open
file ’<stdout>’, mode ’w’>, rdb_signal=u’SIGUSR1’, serial-
izer=u’json’)

Bases: pystorm.component.Component

Base class for all pystorm spouts.

For more information on spouts, consult Storm’s Concepts documentation.

ack(tup_id)
Called when a bolt acknowledges a Tuple in the topology.

Parameters tup_id (str) – the ID of the Tuple that has been fully acknowledged in the
topology.

activate()
Called when the Spout has been activated after being deactivated.

Note: This requires at least Storm 1.1.0.

deactivate()
Called when the Spout has been deactivated.

Note: This requires at least Storm 1.1.0.

emit(tup, tup_id=None, stream=None, direct_task=None, need_task_ids=False)
Emit a spout Tuple message.

Parameters

• tup (list or tuple) – the Tuple to send to Storm, should contain only JSON-
serializable data.

• tup_id (str) – the ID for the Tuple. Leave this blank for an unreliable emit.

10 Chapter 2. API

https://github.com/dashengju/storm/blob/573c42a64885dac9a6a0d4c69a754500b607a8f1/storm-core/src/jvm/backtype/storm/testing/PythonShellMetricsBolt.java#L22-L23
http://storm.apache.org/documentation/Concepts.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

pystorm Documentation, Release 3.1.4

• stream (str) – ID of the stream this Tuple should be emitted to. Leave empty to emit
to the default stream.

• direct_task (int) – the task to send the Tuple to if performing a direct emit.

• need_task_ids (bool) – indicate whether or not you’d like the task IDs the Tuple
was emitted (default: False).

Returns None, unless need_task_ids=True, in which case it will be a list of task IDs
that the Tuple was sent to if. Note that when specifying direct_task, this will be equal to
[direct_task].

fail(tup_id)
Called when a Tuple fails in the topology

A spout can choose to emit the Tuple again or ignore the fail. The default is to ignore.

Parameters tup_id (str) – the ID of the Tuple that has failed in the topology either due to a
bolt calling fail() or a Tuple timing out.

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this component. This is the con-
figuration provided to the topology, merged in with cluster configuration on the worker
node.

• context (dict) – information about the component’s place within the topology such
as: task IDs, inputs, outputs etc.

static is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you specify. In almost
all cases, you are better of using Component.logger and not setting pystorm.log.path, be-
cause that will use a pystorm.component.StormHandler to do the filtering on the Python side
(instead of on the Java side after taking the time to serialize your message and send it to Storm).

next_tuple()
Implement this function to emit Tuples as necessary.

This function should not block, or Storm will think the spout is dead. Instead, let it return and pystorm
will send a noop to storm, which lets it know the spout is functioning.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

2.2. Components 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pystorm Documentation, Release 3.1.4

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm via serializer.

report_metric(name, value)
Report a custom metric back to Storm.

Parameters

• name – Name of the metric. This can be anything.

• value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

Note: In order for this to work, the metric must be registered on the Storm side. See example code here.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

class pystorm.spout.ReliableSpout(*args, **kwargs)
Bases: pystorm.spout.Spout

Reliable spout that will automatically replay failed tuples.

Failed tuples will be replayed up to max_fails times.

For more information on spouts, consult Storm’s Concepts documentation.

ack(tup_id)
Called when a bolt acknowledges a Tuple in the topology.

Parameters tup_id (str) – the ID of the Tuple that has been fully acknowledged in the
topology.

activate()
Called when the Spout has been activated after being deactivated.

Note: This requires at least Storm 1.1.0.

deactivate()
Called when the Spout has been deactivated.

12 Chapter 2. API

https://github.com/dashengju/storm/blob/573c42a64885dac9a6a0d4c69a754500b607a8f1/storm-core/src/jvm/backtype/storm/testing/PythonShellMetricsBolt.java#L22-L23
http://storm.apache.org/documentation/Concepts.html
https://docs.python.org/3/library/stdtypes.html#str

pystorm Documentation, Release 3.1.4

Note: This requires at least Storm 1.1.0.

emit(tup, tup_id=None, stream=None, direct_task=None, need_task_ids=False)
Emit a spout Tuple & add metadata about it to unacked_tuples.

In order for this to work, tup_id is a required parameter.

See Bolt.emit().

fail(tup_id)
Called when a Tuple fails in the topology

A reliable spout will replay a failed tuple up to max_fails times.

Parameters tup_id (str) – the ID of the Tuple that has failed in the topology either due to a
bolt calling fail() or a Tuple timing out.

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this component. This is the con-
figuration provided to the topology, merged in with cluster configuration on the worker
node.

• context (dict) – information about the component’s place within the topology such
as: task IDs, inputs, outputs etc.

static is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you specify. In almost
all cases, you are better of using Component.logger and not setting pystorm.log.path, be-
cause that will use a pystorm.component.StormHandler to do the filtering on the Python side
(instead of on the Java side after taking the time to serialize your message and send it to Storm).

next_tuple()
Implement this function to emit Tuples as necessary.

This function should not block, or Storm will think the spout is dead. Instead, let it return and pystorm
will send a noop to storm, which lets it know the spout is functioning.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

2.2. Components 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pystorm Documentation, Release 3.1.4

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm via serializer.

report_metric(name, value)
Report a custom metric back to Storm.

Parameters

• name – Name of the metric. This can be anything.

• value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

Note: In order for this to work, the metric must be registered on the Storm side. See example code here.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

2.2.2 Bolts

class pystorm.bolt.Bolt(*args, **kwargs)
Bases: pystorm.component.Component

The base class for all pystorm bolts.

For more information on bolts, consult Storm’s Concepts documentation.

Variables

• auto_anchor – A bool indicating whether or not the bolt should automatically anchor
emits to the incoming Tuple ID. Tuple anchoring is how Storm provides reliability, you can
read more about Tuple anchoring in Storm’s docs. Default is True.

• auto_ack – A bool indicating whether or not the bolt should automatically acknowledge
Tuples after process() is called. Default is True.

• auto_fail – A bool indicating whether or not the bolt should automatically fail Tuples
when an exception occurs when the process() method is called. Default is True.

Example:

from pystorm.bolt import Bolt

class SentenceSplitterBolt(Bolt):
(continues on next page)

14 Chapter 2. API

https://github.com/dashengju/storm/blob/573c42a64885dac9a6a0d4c69a754500b607a8f1/storm-core/src/jvm/backtype/storm/testing/PythonShellMetricsBolt.java#L22-L23
http://storm.apache.org/documentation/Concepts.html
https://storm.apache.org/documentation/Guaranteeing-message-processing.html#what-is-storms-reliability-api

pystorm Documentation, Release 3.1.4

(continued from previous page)

def process(self, tup):
sentence = tup.values[0]
for word in sentence.split(" "):

self.emit([word])

ack(tup)
Indicate that processing of a Tuple has succeeded.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to acknowledge.

emit(tup, stream=None, anchors=None, direct_task=None, need_task_ids=False)
Emit a new Tuple to a stream.

Parameters

• tup (list or pystorm.component.Tuple) – the Tuple payload to send to Storm,
should contain only JSON-serializable data.

• stream (str) – the ID of the stream to emit this Tuple to. Specify None to emit to
default stream.

• anchors (list) – IDs the Tuples (or pystorm.component.Tuple instances)
which the emitted Tuples should be anchored to. If auto_anchor is set to True and
you have not specified anchors, anchorswill be set to the incoming/most recent Tuple
ID(s).

• direct_task (int) – the task to send the Tuple to.

• need_task_ids (bool) – indicate whether or not you’d like the task IDs the Tuple
was emitted (default: False).

Returns None, unless need_task_ids=True, in which case it will be a list of task IDs
that the Tuple was sent to if. Note that when specifying direct_task, this will be equal to
[direct_task].

fail(tup)
Indicate that processing of a Tuple has failed.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to fail (its id if str).

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this component. This is the con-
figuration provided to the topology, merged in with cluster configuration on the worker
node.

• context (dict) – information about the component’s place within the topology such
as: task IDs, inputs, outputs etc.

static is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

static is_tick(tup)

Returns Whether or not the given Tuple is a tick Tuple

2.2. Components 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pystorm Documentation, Release 3.1.4

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you specify. In almost
all cases, you are better of using Component.logger and not setting pystorm.log.path, be-
cause that will use a pystorm.component.StormHandler to do the filtering on the Python side
(instead of on the Java side after taking the time to serialize your message and send it to Storm).

process(tup)
Process a single Tuple pystorm.component.Tuple of input

This should be overridden by subclasses. pystorm.component.Tuple objects contain metadata
about which component, stream and task it came from. The actual values of the Tuple can be accessed by
calling tup.values.

Parameters tup (pystorm.component.Tuple) – the Tuple to be processed.

process_tick(tup)
Process special ‘tick Tuples’ which allow time-based behaviour to be included in bolts.

Default behaviour is to ignore time ticks. This should be overridden by subclasses who wish to react to
timer events via tick Tuples.

Tick Tuples will be sent to all bolts in a toplogy when the storm configuration option ‘topol-
ogy.tick.tuple.freq.secs’ is set to an integer value, the number of seconds.

Parameters tup (pystorm.component.Tuple) – the Tuple to be processed.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm via serializer.

read_tuple()
Read a tuple from the pipe to Storm.

report_metric(name, value)
Report a custom metric back to Storm.

Parameters

• name – Name of the metric. This can be anything.

• value – Value of the metric. This is usually a number.

16 Chapter 2. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pystorm Documentation, Release 3.1.4

Only supported in Storm 0.9.3+.

Note: In order for this to work, the metric must be registered on the Storm side. See example code here.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

class pystorm.bolt.BatchingBolt(*args, **kwargs)
Bases: pystorm.bolt.Bolt

A bolt which batches Tuples for processing.

Batching Tuples is unexpectedly complex to do correctly. The main problem is that all bolts are single-threaded.
The difficult comes when the topology is shutting down because Storm stops feeding the bolt Tuples. If the bolt
is blocked waiting on stdin, then it can’t process any waiting Tuples, or even ack ones that were asynchronously
written to a data store.

This bolt helps with that by grouping Tuples received between tick Tuples into batches.

To use this class, you must implement process_batch. group_key can be optionally implemented so that
Tuples are grouped before process_batch is even called.

Variables

• auto_anchor – A bool indicating whether or not the bolt should automatically anchor
emits to the incoming Tuple ID. Tuple anchoring is how Storm provides reliability, you can
read more about Tuple anchoring in Storm’s docs. Default is True.

• auto_ack – A bool indicating whether or not the bolt should automatically acknowledge
Tuples after process_batch() is called. Default is True.

• auto_fail – A bool indicating whether or not the bolt should automatically fail Tuples
when an exception occurs when the process_batch() method is called. Default is
True.

• ticks_between_batches – The number of tick Tuples to wait before processing a
batch.

Example:

from pystorm.bolt import BatchingBolt

class WordCounterBolt(BatchingBolt):

ticks_between_batches = 5

def group_key(self, tup):
word = tup.values[0]
return word # collect batches of words

(continues on next page)

2.2. Components 17

https://github.com/dashengju/storm/blob/573c42a64885dac9a6a0d4c69a754500b607a8f1/storm-core/src/jvm/backtype/storm/testing/PythonShellMetricsBolt.java#L22-L23
https://storm.apache.org/documentation/Guaranteeing-message-processing.html#what-is-storms-reliability-api

pystorm Documentation, Release 3.1.4

(continued from previous page)

def process_batch(self, key, tups):
emit the count of words we had per 5s batch
self.emit([key, len(tups)])

ack(tup)
Indicate that processing of a Tuple has succeeded.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to acknowledge.

emit(tup, **kwargs)
Modified emit that will not return task IDs after emitting.

See pystorm.component.Bolt for more information.

Returns None.

fail(tup)
Indicate that processing of a Tuple has failed.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to fail (its id if str).

group_key(tup)
Return the group key used to group Tuples within a batch.

By default, returns None, which put all Tuples in a single batch, effectively just time-based batching.
Override this to create multiple batches based on a key.

Parameters tup (pystorm.component.Tuple) – the Tuple used to extract a group key

Returns Any hashable value.

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this component. This is the con-
figuration provided to the topology, merged in with cluster configuration on the worker
node.

• context (dict) – information about the component’s place within the topology such
as: task IDs, inputs, outputs etc.

static is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

static is_tick(tup)

Returns Whether or not the given Tuple is a tick Tuple

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

18 Chapter 2. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pystorm Documentation, Release 3.1.4

Warning: This will send your message to Storm regardless of what level you specify. In almost
all cases, you are better of using Component.logger and not setting pystorm.log.path, be-
cause that will use a pystorm.component.StormHandler to do the filtering on the Python side
(instead of on the Java side after taking the time to serialize your message and send it to Storm).

process(tup)
Group non-tick Tuples into batches by group_key.

Warning: This method should not be overriden. If you want to tweak how Tuples are grouped into
batches, override group_key.

process_batch(key, tups)
Process a batch of Tuples. Should be overridden by subclasses.

Parameters

• key (hashable) – the group key for the list of batches.

• tups (list) – a list of pystorm.component.Tuple s for the group.

process_batches()
Iterate through all batches, call process_batch on them, and ack.

Separated out for the rare instances when we want to subclass BatchingBolt and customize what mecha-
nism causes batches to be processed.

process_tick(tick_tup)
Increment tick counter, and call process_batch for all current batches if tick counter exceeds
ticks_between_batches.

See pystorm.component.Bolt for more information.

Warning: This method should not be overriden. If you want to tweak how Tuples are grouped into
batches, override group_key.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm via serializer.

read_tuple()
Read a tuple from the pipe to Storm.

report_metric(name, value)
Report a custom metric back to Storm.

Parameters

2.2. Components 19

https://docs.python.org/3/library/stdtypes.html#list

pystorm Documentation, Release 3.1.4

• name – Name of the metric. This can be anything.

• value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

Note: In order for this to work, the metric must be registered on the Storm side. See example code here.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

class pystorm.bolt.TicklessBatchingBolt(*args, **kwargs)
Bases: pystorm.bolt.BatchingBolt

A BatchingBolt which uses a timer thread instead of tick tuples.

Batching tuples is unexpectedly complex to do correctly. The main problem is that all bolts are single-threaded.
The difficult comes when the topology is shutting down because Storm stops feeding the bolt tuples. If the bolt
is blocked waiting on stdin, then it can’t process any waiting tuples, or even ack ones that were asynchronously
written to a data store.

This bolt helps with that grouping tuples based on a time interval and then processing them on a worker thread.

To use this class, you must implement process_batch. group_key can be optionally implemented so that
tuples are grouped before process_batch is even called.

Variables

• auto_anchor – A bool indicating whether or not the bolt should automatically anchor
emits to the incoming tuple ID. Tuple anchoring is how Storm provides reliability, you can
read more about tuple anchoring in Storm’s docs. Default is True.

• auto_ack – A bool indicating whether or not the bolt should automatically acknowledge
tuples after process_batch() is called. Default is True.

• auto_fail – A bool indicating whether or not the bolt should automatically fail tuples
when an exception occurs when the process_batch() method is called. Default is
True.

• secs_between_batches – The time (in seconds) between calls to
process_batch(). Note that if there are no tuples in any batch, the Tickless-
BatchingBolt will continue to sleep.

Note: Can be fractional to specify greater precision (e.g. 2.5).

Example:

20 Chapter 2. API

https://github.com/dashengju/storm/blob/573c42a64885dac9a6a0d4c69a754500b607a8f1/storm-core/src/jvm/backtype/storm/testing/PythonShellMetricsBolt.java#L22-L23
https://storm.incubator.apache.org/documentation/Guaranteeing-message-processing.html#what-is-storms-reliability-api

pystorm Documentation, Release 3.1.4

from pystorm.bolt import TicklessBatchingBolt

class WordCounterBolt(TicklessBatchingBolt):

secs_between_batches = 5

def group_key(self, tup):
word = tup.values[0]
return word # collect batches of words

def process_batch(self, key, tups):
emit the count of words we had per 5s batch
self.emit([key, len(tups)])

ack(tup)
Indicate that processing of a Tuple has succeeded.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to acknowledge.

emit(tup, **kwargs)
Modified emit that will not return task IDs after emitting.

See pystorm.component.Bolt for more information.

Returns None.

fail(tup)
Indicate that processing of a Tuple has failed.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to fail (its id if str).

group_key(tup)
Return the group key used to group Tuples within a batch.

By default, returns None, which put all Tuples in a single batch, effectively just time-based batching.
Override this to create multiple batches based on a key.

Parameters tup (pystorm.component.Tuple) – the Tuple used to extract a group key

Returns Any hashable value.

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this component. This is the con-
figuration provided to the topology, merged in with cluster configuration on the worker
node.

• context (dict) – information about the component’s place within the topology such
as: task IDs, inputs, outputs etc.

static is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

static is_tick(tup)

Returns Whether or not the given Tuple is a tick Tuple

log(message, level=None)
Log a message to Storm optionally providing a logging level.

2.2. Components 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pystorm Documentation, Release 3.1.4

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you specify. In almost
all cases, you are better of using Component.logger and not setting pystorm.log.path, be-
cause that will use a pystorm.component.StormHandler to do the filtering on the Python side
(instead of on the Java side after taking the time to serialize your message and send it to Storm).

process(tup)
Group non-tick Tuples into batches by group_key.

Warning: This method should not be overriden. If you want to tweak how Tuples are grouped into
batches, override group_key.

process_batch(key, tups)
Process a batch of Tuples. Should be overridden by subclasses.

Parameters

• key (hashable) – the group key for the list of batches.

• tups (list) – a list of pystorm.component.Tuple s for the group.

process_batches()
Iterate through all batches, call process_batch on them, and ack.

Separated out for the rare instances when we want to subclass BatchingBolt and customize what mecha-
nism causes batches to be processed.

process_tick(tick_tup)
Just ack tick tuples and ignore them.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm via serializer.

read_tuple()
Read a tuple from the pipe to Storm.

report_metric(name, value)
Report a custom metric back to Storm.

Parameters

• name – Name of the metric. This can be anything.

22 Chapter 2. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

pystorm Documentation, Release 3.1.4

• value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

Note: In order for this to work, the metric must be registered on the Storm side. See example code here.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

2.2. Components 23

https://github.com/dashengju/storm/blob/573c42a64885dac9a6a0d4c69a754500b607a8f1/storm-core/src/jvm/backtype/storm/testing/PythonShellMetricsBolt.java#L22-L23

pystorm Documentation, Release 3.1.4

24 Chapter 2. API

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

25

pystorm Documentation, Release 3.1.4

26 Chapter 3. Indices and tables

Index

A
ack() (pystorm.bolt.BatchingBolt method), 18
ack() (pystorm.bolt.Bolt method), 15
ack() (pystorm.bolt.TicklessBatchingBolt method), 21
ack() (pystorm.spout.ReliableSpout method), 12
ack() (pystorm.spout.Spout method), 10
activate() (pystorm.spout.ReliableSpout method), 12
activate() (pystorm.spout.Spout method), 10

B
BatchingBolt (class in pystorm.bolt), 17
Bolt (class in pystorm.bolt), 14

C
Component (class in pystorm.component), 7

D
deactivate() (pystorm.spout.ReliableSpout method), 12
deactivate() (pystorm.spout.Spout method), 10

E
emit() (pystorm.bolt.BatchingBolt method), 18
emit() (pystorm.bolt.Bolt method), 15
emit() (pystorm.bolt.TicklessBatchingBolt method), 21
emit() (pystorm.component.Component method), 8
emit() (pystorm.spout.ReliableSpout method), 13
emit() (pystorm.spout.Spout method), 10

F
fail() (pystorm.bolt.BatchingBolt method), 18
fail() (pystorm.bolt.Bolt method), 15
fail() (pystorm.bolt.TicklessBatchingBolt method), 21
fail() (pystorm.spout.ReliableSpout method), 13
fail() (pystorm.spout.Spout method), 11

G
group_key() (pystorm.bolt.BatchingBolt method), 18
group_key() (pystorm.bolt.TicklessBatchingBolt

method), 21

I
initialize() (pystorm.bolt.BatchingBolt method), 18
initialize() (pystorm.bolt.Bolt method), 15
initialize() (pystorm.bolt.TicklessBatchingBolt method),

21
initialize() (pystorm.component.Component method), 9
initialize() (pystorm.spout.ReliableSpout method), 13
initialize() (pystorm.spout.Spout method), 11
is_heartbeat() (pystorm.bolt.BatchingBolt static method),

18
is_heartbeat() (pystorm.bolt.Bolt static method), 15
is_heartbeat() (pystorm.bolt.TicklessBatchingBolt static

method), 21
is_heartbeat() (pystorm.component.Component static

method), 9
is_heartbeat() (pystorm.spout.ReliableSpout static

method), 13
is_heartbeat() (pystorm.spout.Spout static method), 11
is_tick() (pystorm.bolt.BatchingBolt static method), 18
is_tick() (pystorm.bolt.Bolt static method), 15
is_tick() (pystorm.bolt.TicklessBatchingBolt static

method), 21

L
log() (pystorm.bolt.BatchingBolt method), 18
log() (pystorm.bolt.Bolt method), 15
log() (pystorm.bolt.TicklessBatchingBolt method), 21
log() (pystorm.component.Component method), 9
log() (pystorm.spout.ReliableSpout method), 13
log() (pystorm.spout.Spout method), 11

N
next_tuple() (pystorm.spout.ReliableSpout method), 13
next_tuple() (pystorm.spout.Spout method), 11

P
process() (pystorm.bolt.BatchingBolt method), 19
process() (pystorm.bolt.Bolt method), 16

27

pystorm Documentation, Release 3.1.4

process() (pystorm.bolt.TicklessBatchingBolt method),
22

process_batch() (pystorm.bolt.BatchingBolt method), 19
process_batch() (pystorm.bolt.TicklessBatchingBolt

method), 22
process_batches() (pystorm.bolt.BatchingBolt method),

19
process_batches() (pystorm.bolt.TicklessBatchingBolt

method), 22
process_tick() (pystorm.bolt.BatchingBolt method), 19
process_tick() (pystorm.bolt.Bolt method), 16
process_tick() (pystorm.bolt.TicklessBatchingBolt

method), 22

R
raise_exception() (pystorm.bolt.BatchingBolt method),

19
raise_exception() (pystorm.bolt.Bolt method), 16
raise_exception() (pystorm.bolt.TicklessBatchingBolt

method), 22
raise_exception() (pystorm.component.Component

method), 9
raise_exception() (pystorm.spout.ReliableSpout method),

13
raise_exception() (pystorm.spout.Spout method), 11
read_handshake() (pystorm.bolt.BatchingBolt method),

19
read_handshake() (pystorm.bolt.Bolt method), 16
read_handshake() (pystorm.bolt.TicklessBatchingBolt

method), 22
read_handshake() (pystorm.component.Component

method), 9
read_handshake() (pystorm.spout.ReliableSpout

method), 14
read_handshake() (pystorm.spout.Spout method), 12
read_message() (pystorm.bolt.BatchingBolt method), 19
read_message() (pystorm.bolt.Bolt method), 16
read_message() (pystorm.bolt.TicklessBatchingBolt

method), 22
read_message() (pystorm.component.Component

method), 9
read_message() (pystorm.spout.ReliableSpout method),

14
read_message() (pystorm.spout.Spout method), 12
read_tuple() (pystorm.bolt.BatchingBolt method), 19
read_tuple() (pystorm.bolt.Bolt method), 16
read_tuple() (pystorm.bolt.TicklessBatchingBolt

method), 22
ReliableSpout (class in pystorm.spout), 12
report_metric() (pystorm.bolt.BatchingBolt method), 19
report_metric() (pystorm.bolt.Bolt method), 16
report_metric() (pystorm.bolt.TicklessBatchingBolt

method), 22

report_metric() (pystorm.component.Component
method), 9

report_metric() (pystorm.spout.ReliableSpout method),
14

report_metric() (pystorm.spout.Spout method), 12
run() (pystorm.bolt.BatchingBolt method), 20
run() (pystorm.bolt.Bolt method), 17
run() (pystorm.bolt.TicklessBatchingBolt method), 23
run() (pystorm.component.Component method), 10
run() (pystorm.spout.ReliableSpout method), 14
run() (pystorm.spout.Spout method), 12

S
send_message() (pystorm.bolt.BatchingBolt method), 20
send_message() (pystorm.bolt.Bolt method), 17
send_message() (pystorm.bolt.TicklessBatchingBolt

method), 23
send_message() (pystorm.component.Component

method), 10
send_message() (pystorm.spout.ReliableSpout method),

14
send_message() (pystorm.spout.Spout method), 12
Spout (class in pystorm.spout), 10

T
TicklessBatchingBolt (class in pystorm.bolt), 20
Tuple (class in pystorm.component), 7

28 Index

	Quickstart
	API
	Indices and tables

